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ABSTRACT

In this report, we present a novel approach for estimating traffic speed using a sequence of

images from an un-calibrated camera. We assert that exact calibration is not necessary to

estimate speed. Instead, to estimate speed, we use: (1) geometric relationships inherently

available in the image, (2)  some common sense assumptions that reduce the problem to a 1-D

geometry, (3) frame differencing to isolate moving edges and track vehicles between frames, and

(4) parameters from the distribution of vehicle lengths.

KEYWORDS

Video Image Processing, Calibration, Camera, Speed Sensor, Vehicle Length Distribution

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts

and the accuracy of the data presented herein. This document is disseminated through the

Transportation Northwest (TransNow) Regional Center under the sponsorship of the U.S.

Department of Transportation UTC Grant Program and through the Washington State

Department of Transportation. The U.S. government assumes no liability for the contents or use

thereof. Sponsorship for the local match portion of this research project was provided by the

Washington State Department of Transportation. The contents do not necessarily reflect the

official views or policies of the U.S. Department of Transportation or Washington State

Department of Transportation. This report does not constitute a standard, specification, or

regulation.
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1.  INTRODUCTION

Image processing techniques have been applied to traffic scenes for a variety of purposes,

including queue detection, incident detection, vehicle classification, and vehicle counting [1, 2,

3, 4, 5]. In this report, we present a new algorithm for estimating speed based on a sequence of

video images from an un-calibrated camera. This work is motivated by the large number of

roadside cameras installed by Departments of Transportation to observe traffic. The cameras are

typically not installed in a manner that allows them to be easily calibrated, and they are typically

used by operators who can tilt, pan, and zoom by using a joystick to change the camera

calibration. The combination of movable cameras and lack of calibration makes estimating speed

for un-calibrated cameras a challenge. The traffic management community typically uses time-

averaged speed estimates, and so our algorithm is designed to create a time-averaged speed.

Relatively few efforts have been made to measure speed by using video images from un-

calibrated cameras. Some preliminary research on pixel speed estimation in images appears in

Soh et al. [4]. In previous work, few efforts were made to map pixel speed to ground truth speed.

A review of the literature on speed estimation with cameras indicates that most algorithms either

use reference information in the scene or create such references interactively. For example,

Worrall [6] reports using an interactive tool to calibrate a camera in which an operator uses

parallel road marks to identify vanishing points and then places a rectangular calibration grid on

the image. Furthermore, in Dickinson and Waterall [7] and Ashworth et al. [8], speed

measurements are made by using the known physical distance between two detection windows

placed on the road image by an operator. Similarly, several other authors [9, 10] suggest

estimating speed by placing two detection lines, of known separation, in the image and

measuring travel times between the lines. In addition, Houkes [11] suggests the selection of four

reference points to form a rectangle and perform off-line measurements. All these methods

require the operator to perform a calibration procedure before speed can be estimated.

The general motion parameters estimation from Sawhney and Ayer [12] addresses a method

to represent video scenes in a compact way. This method models a complicated scene to allow

for future queries about motion features in video sequences without prior knowledge of camera

calibration. Model-based maximum likelihood estimation and 2D/3D motion models are used for

motion quantification. In the work presented here, the scene description uses a much simpler
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motion model and does not require 2D/3D models but instead requires a calibration between

pixel distance and real world distance traveled.

In this report, we assume that we have no control over camera movements and thus cannot

directly obtain information such as camera focus, tilt, or angle. It is further assumed that the

camera parameters can change with time. In the work presented here, we are monitoring

congested freeways and have neither the ability nor the authority to set permanent marks on the

road. Given this scenario, we believe on-line calibration is a necessary step to enable the use of

the large, installed base of Traffic Management System (TMS) cameras.

We assert that exact calibration is not necessary to estimate time-averaged speed. Instead,

we use (1) geometric relationships inherently available in the image, (2) some common sense

assumptions (listed below) that reduce the problem to a 1-D geometry, and (3) the parameters of

the distribution of vehicle lengths, to propose a novel method that extracts scale information and

estimates speed.

To describe and demonstrate our speed estimation scheme, we first review the assumptions

made in formulating the algorithm. We then discuss the individual steps necessary to estimate

speed and present the detailed steps in the algorithm. Finally, we present some preliminary

quantitative results of the algorithm.

1.1  UNDERLYING ASSUMPTIONS

To create an algorithm to estimate speed from video images, we make several assumptions

to simplify the problem:

1. The speed of the vehicles is finite. The speed of a vehicle has both physical and legal

limits.

2. The vehicle movement is smooth. There are no sudden changes of direction in the time

interval (200ms) between frames in the image sequence.

3. Motion is constrained to the road plane. Tracking of vehicles in the image sequence is a

one-dimensional problem.
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4. The scale factor (feet per pixel) varies linearly along the direction of vehicle travel. We

constrain the vehicles to be moving generally toward or generally away from the camera.

5. The lengths of the vehicles in the images are realizations from a known vehicle length

distribution.

With these assumptions, the vehicles are treated as though they travel in one dimension

along a straight line in the image. The vehicles are tracked across these images to obtain scale

factors that estimate the real-world distance represented by pixels at various locations in the

image. Using a linear function to fit to the empirical scale factors, it is possible to estimate the

real-world distance traveled.  Combining the distance traveled with the known frame rate allows

us to estimate speed. An algorithm to perform this estimation is presented in the next section.

1.2  ALGORITHM OPERATION

To explain the operation of the algorithm, we identify the basic tasks necessary to estimate

speed from sequential un-calibrated images. The tasks necessary to obtain speed from un-

calibrated images are as follows: (1) obtain sequential images, (2) identify the moving vehicles

in the sequential images, (3) track the vehicles between images, (4) dynamically estimate the

scale factor in feet per pixel, and (5) estimate speed from distance traveled and the interframe

delay. An overview of the methodology for steps one and two is found in Figure 1.1.

Figure 1.1  Algorithm inner loop data flow.
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The algorithm operates on sets of sequential images taken from Washington State

Department of Transportation (WSDOT) CCTV cameras. The images used in this work are grey

scale, 320 by 240 pixels, and sampled five times per second. The resolution and sample rate are

selected to provide sufficient detail in the image to identify individual vehicles and to capture

sequential images rapidly enough so that individual vehicles can be tracked between images

without pattern recognition techniques (e.g., the vehicles move no more than about one vehicle

length between images).

The images used in our algorithm are taken from roadside CCTV cameras installed by

WSDOT in its traffic management role. The DOT transports the video from the roadside cameras

to the control center with a dedicated fiber system. In the control center, operators can pan, tilt,

and zoom the cameras with a joystick. The cameras are actively used for  traffic management

activities. No camera calibration information is available for these cameras, and it is the purpose

of this work to demonstrate that the images from such cameras can be used as an alternative

speed estimate. The video is digitized at a rate of five frames per second and stored in files in the

JPEG image format. These JPEG files are the sequential images required for step one in the outer

loop of the algorithm. Sets of three sequential images are used in the inner loop of the algorithm.

The left side of Figure 1.2 shows three example images.

Each of the images is first median filtered, by using a 3x3 kernel, to remove high frequency

noise in the images [13, 14] and then window-level filtered to enhance the intensity ranges and to

adjust the contrast and brightness in the images.

To identify the moving vehicles in the images, the non-moving background must be

removed. Two basic techniques to remove the static background information appear in the

literature. The first technique obtains a frame with only the background that can be subtracted

from the frames in which there are vehicles [15]. This frame is then updated to match the current

lighting levels [2]. This method is not only computationally expensive, but it may be impossible,

on congested freeways, to obtain an image with the correct lighting level and with no vehicles

present. The second technique uses sequential frames to perform forward and backward

differences between the frames [16, 15, 17]. Vieren [17] suggests using interframe differences

with a differential operator to extract moving edges.
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Figure 1.2  Typical image sequence (left). Sobel edges in the
difference images (right top two images). Moving edge image for
the middle image on the left created by intersecting the difference
images.
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The algorithm presented here uses interframe differences and then applies a Sobel edge

detector (labeled Sobel Edge in Figure 1.1) to the resulting image. The resulting images are

thresholded to obtain binary images. The image in the upper right of Figure 1.2 is the binary

image that results from applying the Sobel edge detector to the difference of the top two images

in the left column of Figure 1.2. The image in the right center of Figure 1.2 is the difference

image that results from the middle and bottom images in the left column. These two binary

images (the top and middle images in Figure 1.2) are intersected to obtain the moving edge

image that appears in the lower right of Figure 1.2.

Examining the lower right image in Figure 1.2 shows that while we have identified the

moving edges, those edges do not make closed polygons identifiable as individual vehicles. To

overcome this problem and create closed curves, we use two morphological operations. We

enhance the moving edge image by sequentially applying dilation and erosion [18]. Dilation of

an object is the translation of all of its points with regard to a structural element followed by a

union operation. Dilation is applied to the binary image to close the curves in the moving edge

image; it also expands the overall size of the area enclosed. Erosion is then used to shrink the

object back to the original size. In the algorithm presented, a 3x3 structural element is used in

steps 2f and 2g to perform dilation and erosion.

After the application of the morphological operators, the moving edges are filled in to create

moving blobs. These moving blobs represent the vehicle motion in the images. Past work has

asserted that the convex hull surrounding a vehicle in an image is a good approximation of the

projection of a vehicle in the image [19]. To characterize the moving blobs, we calculate the

convex hull and calculate the centroids for the blobs. The area of each blob is calculated and is

indexed by the vertical location of its centroid in the image. This area is an indicator of blob size

relative to its location in the image. In the following steps, we use only blobs whose size is

greater than 7x7 pixels but less than twice the area for the typical blob in that area of the image.
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Figure 1.3  Use of centroids to establish the travel direction α.

Having located a vehicle in one image, the vehicle is tracked across images by enforcing co-

linearity of the centroids of the convex hulls. The left side of Figure 1.3 presents a representation

of three convex hulls with centroids (x1,y1), (x2,y2), and (x3,y3). The vehicle is tracked as it moves

along the line at an angle (α) relative to the horizontal scan lines in the image. In the work

presented here, a minimum value of 0.95 of the linear regression correlation coefficient,
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is used to identify co-linear centroids and track a vehicle. This completes tasks one through three

necessary to estimate speed.

Figure 1.4  Camera geometry.

The fourth task, estimating the camera calibration parameters, is common to most tracking

problems involving cameras [20]. Figure 1.4 shows the geometry of the problem. We define two

coordinate systems. The first is a camera/sensor centered coordinate system as shown at the top

of Figure 1.4, where the xs axis is the line of sight of the camera and the ys-zs plane is parallel to

the image plane. The second coordinate system, as shown at the bottom of Figure 1.4, is an

earth-fixed system in which the ground plane is defined by xe and ye with the vertical axis ze

downward. We assume that the horizontal axis of the image plane is parallel to the ground plane
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and that the camera’s image axis orientation is at a down angle of φ with respect to the

horizontal. To map between the sensor/camera coordinate system and the earth coordinate

system, we identify an affine transformation with a rotation matrix Hse and a translation vector B

such that

X H X Be se s= +  , (1.2)

where

X X H Be
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e
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where the B vector is the location of the eyepoint of the camera in earth coordinates. The earth to

sensor rotation is the inverse of Hse, and since Hse is orthogonal, Hes is H se
T  [21].

It is useful to define a basis of unit vectors in the earth coordinate system: one along the

roadway Le , one perpendicular to the roadway We , and one in the vertical direction Ke . These

are written

L W Ke e e=

F

H
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I

K
JJJ = -

F
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F
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 , (1.4)

where θ is relative to the x axis in earth coordinates. We also define a set of coordinates l, w, k

along these directions. A differential change in position along the road in earth coordinates is

d dle eX H= , where dl is the magnitude of the differential distance along the road. The same

change in position in  sensor coordinates is d dls es eX H L= c h or, explicitly,

dx

dy

dz

dl

dl

dl

s

s

s
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 . (1.5)
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We define the coordinates in the image plane to be u and v and assert a simple perspective

relationship [14] between the 3-D world and the image plane,

u b
y
x

v b
z
x

s

s

s

s

= =  ,
(1.6)

where b is a scaling constant. By using these perspective relationships and differential calculus,

we can obtain an expression for differentials in the image plane,

du
x

bdy udx dv
x

bdz vdx
s

s s
s

s s= - = -
1 1b g b g . (1.7)

The vehicles are moving on the road, and so ze =0 for a vehicle. From (1.3) we get

h z xs s= +cos sinf fbg bg. Using this result and the expression for v from (1.6), we find that xs is

x
bh

v bs = +cos sinf f
 .

(1.8)

In this work, we make the assumption that the vehicles are traveling generally toward or away

from the camera. This assumption allows us to use the projection of the vehicle size/motion on

the v axis as the measurement of interest. Combining equations (1.5), (1.6), (1.7), and (1.8), we

construct the differential relationship between motion in the direction of the roadway and

changes in the v direction in the image plane,1

¶
¶
=-

+v
l

v b
bh

cos cos sinq f fb g2

 .
(1.9)

In a similar fashion, differentials for the other directions, We  and Ke  from (1.4), can be

constructed,

                                                

1 If the vehicles are instead moving generally across the image, a similar development in terms of 
¶
¶

u
dl

 is possible.
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(1.11)

If the mean vehicle length Dl , mean vehicle width Dw , and mean vehicle height Dk , as taken

from [22], are used with these differentials, the projection of a vehicle on the roadway in the v

direction in the image plane can be written,

D D D Dv l
v
l

k
v
k

w
v
w

»
¶
¶
+

¶
¶
+

¶
¶

 .
(1.12)

The mean height and width can be expressed as a fraction of the mean length, D Dw a lw=

and D Dk a lk= .

D
D

v
l

v
l

a
v
k

a
v
wk w»

¶
¶
+

¶
¶
+

¶
¶

RST
UVW .

(1.13)

By using this with equations (1.9), (1.10), and (1.11), we get a quadratic in v,

D
D

v
l

v
a a

bh

v
a a

h

b a a

h

k l
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=
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(1.14)

that depends on b, h, θ and φ which are assumed constant but are not observable. We define the

inverse of the scaling function used to map displacements along the roadway to pixels in the v

direction as

1
q v

v
l

v
lbg=

¶
¶
» +
D
D

b ,
(1.15)
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which has an inverse quadratic relationship with v and a bias β associated with the two rightmost

terms in equation (1.13). The cameras in use are not calibrated, but a parametric study of the

form of equation (1.13) allows us to bound our bias error. To evaluate this bias, we create a

function,

b
¶
¶

F
HG

I
KJ
=

¶
¶
+

¶
¶

F
HG

I
KJ

¶
¶

F
HG

I
KJ

v
l

a
v
k

a
v
w

v
l

k w

 , (1.16)

that represents the fraction of the scaling factor by which β biases our estimate. Figure 1.5

presents representative surfaces created by this function when evaluated with values of b and h,

estimated by hand and by WSDOT respectively, and varying the values of α, φ, and v. Each of

the surfaces is created at a constant value of α and u that in turn implies a value for θ,

q
f

f
a=

+F

H
GGG

I

K
JJJ

arctan
cos

sin
tan

u b

b
 .

(1.17)

Figure 1.5  Parametric form for the bias term in equation (1.16) using representative parameters.
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These surfaces indicate that the bias term can have significant effects on the results of our

approximation if the measurements are not restricted to regions of the images where the

approximation is acceptable.

Figure 1.6  Parametric form for ∆v for representative parameters.

The algorithm is constrained to use vehicles from the image that project a length of at least

seven pixels in the v direction. Figure 1.6 shows the surface of equation (1.12), which is the

vehicle projection in pixels along the v axis. By using representative values from equation (1.12),

we can visualize the seven-pixel constraint in the bottom plane of Figure 1.5. The darkened area

is the combination of the variables in equation (1.12) that will produce an acceptably long

vehicle image. Near φ=0 and above v=0 the seven-pixel criterion is not met; this area is shown in

white in Figure 1.5. The seven-pixel constraint assures that measurements from this region will

not be used and eliminates the contribution of the very large bias in this region. In addition, the
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requirement for the vehicles to move toward or away from the camera restricts the acceptable α

values to 50 90o o< £a . With these constraints, the bias introduced is of acceptable levels in

comparison to the overall variability in the observed data.

We make individual estimates of the scale factor $qbg as the ratio of the mean vehicle length

Dlc h and the estimate of vehicle pixel length Dvb g from the image. A representative data set is

shown in Figure 1.7. Superimposed on the data set are two functions. The line with curvature is

the least square best fit of the function

1

1
2

2 3c v c v c+ +
(1.18)

to the observed scale factor estimates. This function has the same form as equation (1.15) or the

inverse of equation (1.13). The second line in Figure 1.7 is of the form

q v mv bbg= + (1.19)

or a linear approximation to the observed scale factor estimates. The observed estimates have a

variance larger than the difference between the two models. The largest possible contribution

from the quadratic term in equation (1.18) is less than 10 percent of the value, which is smaller

than the variance. On the basis of the combination of the variability of the data, which calls into

question the value of estimating higher order terms, and the overall trend in the data, we assert

that we can approximate this function with a linear relationship.

The distance traveled is the integral of this function along the v direction,

d q v dv
v

v
= bg

1

2

 . (1.20)

Finally, having an estimate of the distance traveled, we use the interframe sample time, ∆t, to

estimate the vehicle speed,

$S
d

t
k=
D

 .
(1.21)

This provides an estimate of speed from un-calibrated cameras.
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Figure 1.7  Scale factor function and observed realizations.
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2.  ALGORITHM

The algorithm operates on a series of at least five sequential images. The inner loop operates

on sequential groups of three images to create one enhanced image (see Figure 1.1). The outer

loop uses a sequence of enhanced images to estimate speed.

Outer Loop

1. Obtain five or more sequential images (320x240), gray scale at five frames per second

(e.g., I I I I Ii i i i i N, , , ,...,+ + + +1 2 3b g where N ³5)

2. Create sets of three sequential images (e.g., I I Ii i i, ,+ +1 2b g is the ith set of (N-2) sets)

Inner Loop For each of the sets of three sequential video images, perform the

following:

(a) Median filter and window-level filter each image.

(b) Difference the first and second images I Ii i- +1b g as well as the third and second

images I Ii i+ +-2 1b g to get two difference images.

(c) Apply a Sobel edge detector to the difference images to obtain edge images

Sobel I Ii i+ +-2 1b g and Sobel I Ii i- +1b g.
(d) Threshold the edge images to create binary images.

(e) Intersect the two binary images to obtain the moving edge image ME Ii+1b gc hfor

the Ii+1 image:

ME I Threshold Sobel I I

Threshold Sobel I I

i i i

i i

+ + +

+

= -

-

1 2 1

1

b g b gc h
b gc hI

 .

(f) Apply dilation to the moving edge image.

(g) Apply erosion to the moving edge image.



18

(h) Identify the set of points C j iI +1b g for the j convex hulls in the moving edge

image ME Ii+1b gc h.
(i) Calculate the centroid ri j u v+ =1, ,b gb g for the jth convex hull in image Ii+1.

(j) Calculate the set of points for the bounding boxes B j iI +1b g for the j convex hulls.

End of the inner loop

3. Select sets of co-linear centroids r r r ri j i j i j N j+ + + -1 2 3 2, , , , , , ,b gb gb g b gc hL  in

sequential images and estimate a best fit line through these points. The slope of this line

is the tangent of the angle of motion α for the jth centroid in the series of images.

4. For each of the collinear bounding boxes in sequential images, estimate the pixel length

L i j+1,b g along the direction v,

L i j sup v v I inf v v Ij i j i+ = Î - Î+ +1 1 1, : :b g b gd i b gd iB B  ,

where sup is the supremum or least upper bound and inf is the infimum or greatest lower

bound [23].

5. Estimate the scale factor $qk  (feet/pixel) for the v location of the centroid ri j+1,b g
using the mean vehicle length Dl ,

$ ,
,

q i v
l

L i j
+ =

+
1

1
b g b g

D
 ,

and incorporate this estimate in the collection of data used to estimate the scale factor

function from equation (1.19). Vehicle dimensions and percentage distribution of traffic

volumes from [22] are used to estimate the mean vehicle length.

End Outer Loop

6. Use the collected set of scale-factor estimates to estimate the slope (m) and intersection (b)

of the scale factor function q v m b,c h using
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min | , $ ,
( , )m b

q v m b q i v ib g b g- + "1 2  ,

where q v m b mv b,c h= +  and v is the distance along a vertical axis in the image.

7. Estimate the interframe distances,

d q v dv k i Nk v

v

k

k

= " Î + -
+ bg b g1

1 2,  .

8. Estimate the mean of the interframe distances E dkbg and use the ratio of the interframe

mean and the frame rate (∆t) to estimate speed,

$s
E d

t
k=

bg
D

 .
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3.  RESULTS

The preliminary results of applying the algorithm to images from a variety of lighting

conditions indicate that it is a viable alternative to using calibrated cameras when the region of

the image used to estimate speed is appropriately constrained. Images from roadside cameras are

used with appropriate constraints to obtain speed estimates suitable for comparison both with

“ground truth” and inductance loop speed estimates.

The speed estimates presented here are made with three practical constraints. The first

constraint is that only vehicles whose projection is over seven pixels long be used. The second

constraint is that only vehicles identified in the lower half of the image be used for scale factor

and speed estimation. The third constraint is that the apparent angle of the roadway in the image

be (50 < α < 130).

The algorithm accuracy is evaluated in two ways. First, a ground truth estimate of the

vehicle speed is compared to the algorithm results, and second, the time average algorithm result

is compared to equivalent inductance loop speed measurements.

The ground truth speed is obtained by placing calibration lines on the highway and

measuring “by hand” the time for individual vehicles to pass the sequential highway markings in

sequential images. This ground truth individual vehicle speed can then be compared to the

estimates derived from the algorithm.

The algorithm presented here depends upon using the mean of a distribution of vehicle

dimensions. A single vehicle represents a realization from this distribution and not the mean. As

a result, there will be errors in the estimate of any individual vehicle speed. If speed estimates are

made for a number of vehicles, the errors in these estimates will have a distribution, and the

mean of this distribution will be zero if the algorithm is performing well.

Figure 3.1 is a histogram of the error between the individual speed estimates and the ground

truth vehicle speed for a series of 190 images over 40 seconds. These results are for vehicles

being by the algorithm without regard to lighting effects. The distribution has zero mean, and

that suggests that using this methodology with a large number of vehicles will allow for an

accurate estimate of a mean traffic speed. The requirement for large numbers of vehicles to get a

mean value implies that 20 seconds are necessary to obtain a sampling with a suitable number of
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vehicles. This time frame makes the measurements from this technique analogous to the speed

estimated from 20-second averaged inductance loop measurements.

Figure 3.1  Histogram of the fraction of error for the speed estimate for single vehicles.

Traffic speeds derived from inductance loops  are also compared with the algorithm

estimates. The inductance loop speeds come from the Traffic Data Acquisition and Distribution

(TDAD) data mine (http://www.its.washington.edu/tdad), which contains data from the Seattle

metropolitan region. Figure 3.2 is a histogram of the difference between the results of our speed

estimation algorithm and the 20-second average loop speed estimate. Figure 3.2 is constructed

from 342 video speed estimates, each created from 80 three-image sequences. The scale factor

function used for these estimates is created from 100 sequences of the algorithm captured just

before the comparison sequence. The mean of the difference between the estimates is 4 miles per
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hour, indicating a bias in one of the estimators. However, the deviation about that mean is

relatively symmetric, indicating that the underlying process creating the estimates, the variability

of speed on the freeway, is the same. The bias may be present in either estimator; however, no

ground truth calibration like Figure 3.1 is available for the loop detectors.

Figure 3.2  Histogram of the deviation of video speed estimates
from 20-second averaged inductance loop estimates.

We examined the relationship between lighting conditions and the error in the estimates, and

it has become clear that the shadow effects account for the set of errors over 10 percent in the

ground truth speed estimate. Reconciling the algorithm against lighting conditions is an ongoing

effort.
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This report presents a new algorithm to estimate speed from un-calibrated, relatively low-

resolution cameras. Un-calibrated cameras are widely available to DOT operators and can

provide a valuable, additional quantitative measure for traffic operations and traveler

information.
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