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ABSTRACT

In this report, we present a novel approach for estimating traffic speed using a sequence of
images from an un-calibrated camera. We assert that exact calibration is not necessary to
estimate speed. Instead, to estimate speed, we use: (1) geometric relationships inherently
availablein theimage, (2) some common sense assumptions that reduce the problem to a1-D
geometry, (3) frame differencing to isolate moving edges and track vehicles between frames, and

(4) parameters from the distribution of vehicle lengths.

KEYWORDS

Video Image Processing, Calibration, Camera, Speed Sensor, Vehicle Length Distribution

DISCLAIMER
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1. INTRODUCTION

I mage processing techniques have been applied to traffic scenes for avariety of purposes,
including queue detection, incident detection, vehicle classification, and vehicle counting [1, 2,
3, 4, 5]. In thisreport, we present a new algorithm for estimating speed based on a sequence of
video images from an un-calibrated camera. Thiswork is motivated by the large number of
roadside cameras installed by Departments of Transportation to observe traffic. The cameras are
typically not installed in amanner that allows them to be easily calibrated, and they are typically
used by operators who can tilt, pan, and zoom by using ajoystick to change the camera
calibration. The combination of movable cameras and lack of calibration makes estimating speed
for un-calibrated cameras a challenge. The traffic management community typically uses time-

averaged speed estimates, and so our algorithm is designed to create a time-averaged speed.

Relatively few efforts have been made to measure speed by using video images from un-
calibrated cameras. Some preliminary research on pixel speed estimation in images appearsin
Soh et al. [4]. In previous work, few efforts were made to map pixel speed to ground truth speed.
A review of the literature on speed estimation with cameras indicates that most algorithms either
use reference information in the scene or create such references interactively. For example,
Worrall [6] reports using an interactive tool to calibrate a camerain which an operator uses
parallel road marksto identify vanishing points and then places arectangular calibration grid on
the image. Furthermore, in Dickinson and Waterall [7] and Ashworth et al. [8], speed
measurements are made by using the known physical distance between two detection windows
placed on the road image by an operator. Similarly, several other authors[9, 10] suggest
estimating speed by placing two detection lines, of known separation, in the image and
measuring travel times between the lines. In addition, Houkes [11] suggests the selection of four
reference points to form arectangle and perform off-line measurements. All these methods

require the operator to perform a calibration procedure before speed can be estimated.

The general motion parameters estimation from Sawhney and Ayer [12] addresses a method
to represent video scenes in a compact way. This method models a complicated scene to allow
for future queries about motion features in video sequences without prior knowledge of camera
calibration. Model-based maximum likelihood estimation and 2D/3D motion models are used for
motion quantification. In the work presented here, the scene description uses a much simpler



motion model and does not require 2D/3D models but instead requires a calibration between
pixel distance and real world distance traveled.

In this report, we assume that we have no control over camera movements and thus cannot
directly obtain information such as camerafocus, tilt, or angle. It is further assumed that the
camera parameters can change with time. In the work presented here, we are monitoring
congested freeways and have neither the ability nor the authority to set permanent marks on the
road. Given this scenario, we believe on-line calibration is a necessary step to enable the use of

the large, installed base of Traffic Management System (TMS) cameras.

We assert that exact calibration is not necessary to estimate time-averaged speed. Instead,
we use (1) geometric relationships inherently available in the image, (2) some common sense
assumptions (listed below) that reduce the problem to a 1-D geometry, and (3) the parameters of
the distribution of vehicle lengths, to propose a novel method that extracts scale information and
estimates speed.

To describe and demonstrate our speed estimation scheme, we first review the assumptions
made in formul ating the algorithm. We then discuss the individual steps necessary to estimate
speed and present the detailed steps in the agorithm. Finally, we present some preliminary

quantitative results of the algorithm.

1.1 UNDERLYING ASSUMPTIONS

To create an algorithm to estimate speed from video images, we make several assumptions

to ssimplify the problem:

1. The speed of the vehiclesisfinite. The speed of a vehicle has both physical and legal
limits.
2. The vehicle movement is smooth. There are no sudden changes of direction in the time

interval (200ms) between frames in the image sequence.

3. Motion is constrained to the road plane. Tracking of vehiclesin the image sequenceisa

one-dimensional problem.



4. The scale factor (feet per pixel) varies linearly along the direction of vehicle travel. We

constrain the vehicles to be moving generally toward or generally away from the camera.

5. Thelengths of the vehiclesin the images are realizations from a known vehicle length
distribution.

With these assumptions, the vehicles are treated as though they travel in one dimension
along a straight line in the image. The vehicles are tracked across these images to obtain scale
factors that estimate the real-world distance represented by pixels at various locations in the
image. Using alinear function to fit to the empirical scale factors, it is possible to estimate the
real-world distance traveled. Combining the distance traveled with the known frame rate allows

us to estimate speed. An algorithm to perform this estimation is presented in the next section.

1.2 ALGORITHM OPERATION

To explain the operation of the algorithm, we identify the basic tasks necessary to estimate
speed from sequentia un-calibrated images. The tasks necessary to obtain speed from un-
calibrated images are as follows: (1) obtain sequential images, (2) identify the moving vehicles
in the sequential images, (3) track the vehicles between images, (4) dynamically estimate the
scale factor in feet per pixel, and (5) estimate speed from distance traveled and the interframe

delay. An overview of the methodology for steps one and two isfound in Figure 1.1.
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Figure 1.1 Algorithm inner loop data flow.



The algorithm operates on sets of sequential images taken from Washington State
Department of Transportation (WSDOT) CCTV cameras. The images used in thiswork are grey
scale, 320 by 240 pixels, and sampled five times per second. The resolution and sample rate are
selected to provide sufficient detail in the image to identify individual vehicles and to capture
sequential images rapidly enough so that individual vehicles can be tracked between images
without pattern recognition techniques (e.g., the vehicles move no more than about one vehicle
length between images).

The images used in our algorithm are taken from roadside CCTV camerasinstalled by
WSDOT in its traffic management role. The DOT transports the video from the roadside cameras
to the control center with a dedicated fiber system. In the control center, operators can pan, tilt,
and zoom the cameras with a joystick. The cameras are actively used for traffic management
activities. No camera calibration information is available for these cameras, and it is the purpose
of thiswork to demonstrate that the images from such cameras can be used as an dternative
speed estimate. The video is digitized at arate of five frames per second and stored in filesin the
JPEG image format. These JPEG files are the sequential images required for step one in the outer
loop of the algorithm. Sets of three sequential images are used in the inner loop of the algorithm.
The left side of Figure 1.2 shows three example images.

Each of the imagesisfirst median filtered, by using a 3x3 kernel, to remove high frequency
noise in the images [13, 14] and then window-level filtered to enhance the intensity ranges and to

adjust the contrast and brightness in the images.

To identify the moving vehicles in the images, the non-moving background must be
removed. Two basic techniques to remove the static background information appear in the
literature. The first technique obtains a frame with only the background that can be subtracted
from the frames in which there are vehicles [15]. This frame is then updated to match the current
lighting levels [2]. This method is not only computationally expensive, but it may be impossible,
on congested freeways, to obtain an image with the correct lighting level and with no vehicles
present. The second technigue uses sequential frames to perform forward and backward
differences between the frames [16, 15, 17]. Vieren [17] suggests using interframe differences

with a differential operator to extract moving edges.
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Figure 1.2 Typical image sequence (left). Sobel edges in the
difference images (right top two images). Moving edge image for
the middle image on the left created by intersecting the difference



The algorithm presented here uses interframe differences and then applies a Sobel edge
detector (labeled Sobel Edge in Figure 1.1) to the resulting image. The resulting images are
thresholded to obtain binary images. The image in the upper right of Figure 1.2 isthe binary
image that results from applying the Sobel edge detector to the difference of the top two images
in the left column of Figure 1.2. Theimage in the right center of Figure 1.2 is the difference
image that results from the middle and bottom images in the left column. These two binary
images (the top and middle images in Figure 1.2) are intersected to obtain the moving edge
image that appears in the lower right of Figure 1.2.

Examining the lower right image in Figure 1.2 shows that while we have identified the
moving edges, those edges do not make closed polygons identifiable as individual vehicles. To
overcome this problem and create closed curves, we use two morphological operations. We
enhance the moving edge image by sequentially applying dilation and erosion [18]. Dilation of
an object isthe trandation of al of its points with regard to a structural element followed by a
union operation. Dilation is applied to the binary image to close the curves in the moving edge
image; it also expands the overall size of the area enclosed. Erosion is then used to shrink the
object back to the original size. In the algorithm presented, a 3x3 structural element isused in
steps 2f and 2g to perform dilation and erosion.

After the application of the morphological operators, the moving edges arefilled in to create
moving blobs. These moving blobs represent the vehicle motion in the images. Past work has
asserted that the convex hull surrounding a vehicle in an image is a good approximation of the
projection of avehicle in theimage [19]. To characterize the moving blobs, we calculate the
convex hull and calculate the centroids for the blobs. The area of each blob is calculated and is
indexed by the vertical location of its centroid in the image. Thisareais an indicator of blob size
relative to itslocation in the image. In the following steps, we use only blobs whose sizeis

greater than 7x7 pixels but less than twice the area for the typical blob in that area of the image.
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Figure 1.3 Use of centroidsto establish thetravel direction a.

Having located a vehicle in one image, the vehicle is tracked across images by enforcing co-
linearity of the centroids of the convex hulls. The left side of Figure 1.3 presents a representation
of three convex hulls with centroids (x1,y1), (X2,y2), and (Xs,y3). The vehicle istracked as it moves
along the line at an angle (a) relative to the horizontal scan linesin the image. In the work

presented here, a minimum value of 0.95 of the linear regression correlation coefficient,
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is used to identify co-linear centroids and track a vehicle. This completes tasks one through three

necessary to estimate speed.

Figure 1.4 Camera geometry.

The fourth task, estimating the camera calibration parameters, is common to most tracking
problems involving cameras [20]. Figure 1.4 shows the geometry of the problem. We define two
coordinate systems. Thefirst is a camera/sensor centered coordinate system as shown at the top
of Figure 1.4, where the x; axisisthe line of sight of the cameraand the ysz; planeis parallel to
the image plane. The second coordinate system, as shown at the bottom of Figure 1.4, isan
earth-fixed system in which the ground plane is defined by x. and ye with the vertical axis z

downward. We assume that the horizontal axis of the image plane is parallel to the ground plane



and that the camera simage axis orientation is at a down angle of f with respect to the
horizontal. To map between the sensor/camera coordinate system and the earth coordinate
system, we identify an affine transformation with a rotation matrix Heg. and a translation vector B
such that

X, d@H_X B, (1.2)

| s 0 Af&inxd
X, H X, H %" Oy (1.3
Z Shx* 0 cosx

where the B vector isthe location of the eyepoint of the camerain earth coordinates. The earth to

where

sensor rotation is the inverse of He, and since He is orthogonal, Hesis HL, [21].

It is useful to define abasis of unit vectors in the earth coordinate system: one along the

roadway L , one perpendicular to the roadway W, and onein the vertical direction K .. These

e -

where q isrelative to the x axis in earth coordinates. We also define a set of coordinates|, w, k

are written

along these directions. A differential change in position along the road in earth coordinatesis

dX, EH_dl, where d! is the magnitude of the differential distance along the road. The same

change in position in sensor coordinatesis dX , EH &sCedI I or, explicitly,

s l ostcosl |

. \Y
A snll . (1.5
oslsin >&il]’

S

10



We define the coordinates in the image plane to be u and v and assert a simple perspective

relationship [14] between the 3-D world and the image plane,

udbY: vEbZ | (1.6)

Xs Xs

where b is a scaling constant. By using these perspective relationships and differential calculus,

we can obtain an expression for differentials in the image plane,

du Hi tﬁjys ﬂﬂjdxsg dv Bi lﬁjzs e, (. (1.7)
Xs Xs *

The vehicles are moving on the road, and so z. =0 for avehicle. From (1.3) we get

h iz, cos@%S s nm‘. Using this result and the expression for v from (1.6), we find that xs is

< bh | ' (1.8)
veosxi=bhsin X

In this work, we make the assumption that the vehicles are traveling generally toward or away
from the camera. This assumption allows us to use the projection of the vehicle size/motion on
the v axis as the measurement of interest. Combining equations (1.5), (1.6), (1.7), and (1.8), we
construct the differential relationship between motion in the direction of the roadway and
changes in the v direction in the image plane,*

osd@cosi‘Eﬂ)si n ig (1.9

N gt
X bh

In asimilar fashion, differentials for the other directions, W, and K, from (1.4), can be

constructed,

u
11 the vehicles are instead moving generally across theimage, a similar development in terms of g ispossible.

11



X=bs in0 (1.10)
ﬁ He 0S smigsm

A bh
A bcosiEﬂ) i@q nRMcosx( (1.13)
x bh

If the mean vehicle length <l , mean vehicle width $Ww, and mean vehicle height <k , as taken
from [22], are used with these differentials, the projection of avehicle on the roadway in the v

direction in the image plane can be written,

av sl Y =k Y e (112)
A e 2K A

The mean height and width can be expressed as a fraction of the mean length, sw Ha,, sl

W E$ (1.13)
B

By using this with equations (1.9), (1.10), and (1.11), we get aquadraticin v,

W ﬁ)ﬁ sini‘Ecosila sinQfeos
_— V
Sl

bh

- ﬁcosb?‘@i n ZXQW sinQefeos
h
@ﬁni@ cosi‘%inib)s[lﬁ!éw sin
h

and <k Hia, sl .

(1.14)

that dependson b, h, g and f which are assumed constant but are not observable. We define the
inverse of the scaling function used to map displacements along the roadway to pixelsin thev

direction as

(1.15)

L ey oWy
qm‘j S

12



which has an inverse quadratic relationship with v and a bias b associated with the two rightmost
termsin equation (1.13). The camerasin use are not calibrated, but a parametric study of the

form of equation (1.13) allows usto bound our bias error. To evaluate this bias, we create a
function,

il
W

hal

that represents the fraction of the scaling factor by which b biases our estimate. Figure 1.5

presents representative surfaces created by this function when evaluated with values of b and h,
estimated by hand and by WSDOT respectively, and varying the values of a, f, and v. Each of

the surfacesis created at a constant value of a and u that in turn impliesavalue for q,

057 =h sin L

tan Soe
UEarctan 5 F . (1.17)

(akdv/dk +a, dv/dw) / (dv/dI)

Bias Fraction

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘.

40

. 60
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Figure 1.5 Parametric form for the biasterm in equation (1.16) using representative parameters.
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image that project alength of at least

The algorithm is constrained to use vehicles from the

seven pixelsin the v direction. Figure 1.6 shows the surface of equation (1.12), whichisthe

vehicle projection in pixels aong the v axis. By using representative values from equation (1.12),

the seven-pixel constraint in the bottom plane of Figure 1.5. The darkened area

1ze
at

a
in

we can visu

(1.12) that will produce an acceptably long

on

in equat

0 and above v=0 the seven-pixel cr

f the variablesi

Ion o

the comb

IS

isshownin

this area

iterion is not met

vehicleimage. Near f

not be used and eliminates the contribution of the very large bias in thisregion. In addition, the

isregion wi

white in Figure 1.5. The seven-pixel constraint assures that measurements from th

14



requirement for the vehicles to move toward or away from the camera restricts the acceptable a
valuesto 50" G090 . With these constraints, the bias introduced is of acceptable levelsin
comparison to the overall variability in the observed data.

We make individual estimates of the scale factor ﬂ astheratio of the mean vehicle length

@I_I and the estimate of vehicle pixel length @v! from theimage. A representative data set is
shown in Figure 1.7. Superimposed on the data set are two functions. The line with curvature is

the least square best fit of the function

1 (1.18)
c,v* [=8,v [=t,

to the observed scale factor estimates. This function has the same form as equation (1.15) or the

inverse of equation (1.13). The second linein Figure 1.7 is of the form

q@m\/ =b (1.19)

or alinear approximation to the observed scale factor estimates. The observed estimates have a
variance larger than the difference between the two models. The largest possible contribution
from the quadratic term in equation (1.18) is less than 10 percent of the value, which is smaller
than the variance. On the basis of the combination of the variability of the data, which callsinto
guestion the value of estimating higher order terms, and the overall trend in the data, we assert

that we can approximate this function with alinear relationship.

The distance traveled is the integral of this function along the v direction,

daZalg (1.20)

Finally, having an estimate of the distance traveled, we use the interframe sample time, D, to
estimate the vehicle speed,

agle (1.21)
st

This provides an estimate of speed from un-calibrated cameras.
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2. ALGORITHM

The algorithm operates on a series of at least five sequential images. The inner loop operates
on sequential groups of three images to create one enhanced image (see Figure 1.1). The outer

loop uses a sequence of enhanced images to estimate speed.
Outer Loop

1. Obtain five or more sequential images (320x240), gray scale at five frames per second
(e.g., ﬁ),li@,li@,liga ..... I@!where N X5)

2. Create sets of three sequential images (e.g., m lg I@g istheith set of (N-2) sets)

Inner Loop For each of the sets of three sequential video images, perform the

following:
(@ Median filter and window-level filter each image.
(b) Difference the first and second images m ﬂ!ﬁigs aswell asthethird and second

images [0 , &, ,( to get two difference images.

(c) Apply aSobel edge detector to the difference images to obtain edge images
Sobel [0, &, ., ( and Sobel D) &M, (

(d) Threshold the edge images to create binary images.

(e) Intersect the two binary images to obtain the moving edge image (I}‘/IEmEﬂ gfor

the I, , image:

MEID , GihresholdGobel 1D, &, , @
N ThresholdGobel [D @m@g '

(f) Apply dilation to the moving edge image.

(g) Apply erosion to the moving edge image.

17



(h) Identify the set of points C, KDEJS for thej convex hullsin the moving edge

image (E’IEmEﬂg.
(i) Calculate the centroid = D E J@ﬂ vg for the jth convex hull inimage I, ;.
(1) Calculate the set of points for the bounding boxes B, m@( for the j convex hulls,

End of theinner loop

3. Seect sets of co-linear centroids GID=, j, j, Jgtm ar2, jg in

sequential images and estimate a best fit line through these points. The slope of thisline

is the tangent of the angle of motion a for the jth centroid in the series of images.

4. For each of the collinear bounding boxes in sequential images, estimate the pixel length
LID=, ] ( along the direction v,

L= j@sup(ﬂv'&Bj m@gﬁhfmvw,- Dgn@

where sup is the supremum or least upper bound and inf is the infimum or greatest lower
bound [23].

5. Estimate the scale factor ¢, (feet/pixel) for the v location of the centroid 10, js

using the mean vehicle length I,

. g Sl
013Gy

and incorporate this estimate in the collection of data used to estimate the scale factor
function from equation (1.19). Vehicle dimensions and percentage distribution of traffic

volumes from [22] are used to estimate the mean vehicle length.
End Outer Loop

6. Usethe collected set of scale-factor estimates to estimate the slope (m) and intersection (b)
of the scale factor function q@m, b| using

18



(mmlbrguqmm bgﬂ'@, v@ o,

where q@m, bmm\/ [=b and v isthe distance along a vertical axisin the image.

Estimate the interframe distances,
o @2 a0g =< kDN (.

Estimate the mean of the interframe distances EId, (and use the ratio of the interframe

mean and the frame rate (Dt) to estimate speed,

19



3. RESULTS

The preliminary results of applying the algorithm to images from a variety of lighting
conditions indicate that it is a viable alternative to using calibrated cameras when the region of
the image used to estimate speed is appropriately constrained. Images from roadside cameras are
used with appropriate constraints to obtain speed estimates suitable for comparison both with
“ground truth” and inductance loop speed estimates.

The speed estimates presented here are made with three practical constraints. The first
constraint is that only vehicles whose projection is over seven pixelslong be used. The second
constraint isthat only vehiclesidentified in the lower half of the image be used for scale factor
and speed estimation. The third constraint is that the apparent angle of the roadway in the image
be (50 < a < 130).

The algorithm accuracy is evaluated in two ways. First, aground truth estimate of the
vehicle speed is compared to the algorithm results, and second, the time average algorithm result

is compared to equivalent inductance loop speed measurements.

The ground truth speed is obtained by placing calibration lines on the highway and
measuring “by hand” the time for individual vehicles to pass the sequential highway markingsin
sequential images. This ground truth individual vehicle speed can then be compared to the
estimates derived from the algorithm.

The algorithm presented here depends upon using the mean of a distribution of vehicle
dimensions. A single vehicle represents arealization from this distribution and not the mean. As
aresult, there will be errorsin the estimate of any individual vehicle speed. If speed estimates are
made for a number of vehicles, the errors in these estimates will have a distribution, and the

mean of this distribution will be zero if the algorithm is performing well.

Figure 3.1 is a histogram of the error between the individual speed estimates and the ground
truth vehicle speed for a series of 190 images over 40 seconds. These results are for vehicles
being by the algorithm without regard to lighting effects. The distribution has zero mean, and
that suggests that using this methodology with alarge number of vehicleswill allow for an
accurate estimate of a mean traffic speed. The requirement for large numbers of vehiclesto get a

mean value implies that 20 seconds are necessary to obtain a sampling with a suitable number of

20



vehicles. Thistime frame makes the measurements from this technique anal ogous to the speed

estimated from 20-second averaged inductance loop measurements.
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Figure 3.1 Histogram of the fraction of error for the speed estimate for single vehicles.

Traffic speeds derived from inductance loops are al'so compared with the algorithm
estimates. The inductance loop speeds come from the Traffic Data Acquisition and Distribution
(TDAD) data mine (http://www.its.washington.edu/tdad), which contains data from the Sesattle
metropolitan region. Figure 3.2 is a histogram of the difference between the results of our speed
estimation algorithm and the 20-second average loop speed estimate. Figure 3.2 is constructed
from 342 video speed estimates, each created from 80 three-image sequences. The scale factor
function used for these estimates is created from 100 sequences of the algorithm captured just

before the comparison sequence. The mean of the difference between the estimatesis 4 miles per
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hour, indicating a bias in one of the estimators. However, the deviation about that mean is
relatively symmetric, indicating that the underlying process creating the estimates, the variability
of speed on the freeway, is the same. The bias may be present in either estimator; however, no
ground truth calibration like Figure 3.1 is available for the |loop detectors.
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Figure 3.2 Histogram of the deviation of video speed estimates
from 20-second aver aged inductance loop estimates.

We examined the relationship between lighting conditions and the error in the estimates, and
it has become clear that the shadow effects account for the set of errors over 10 percent in the
ground truth speed estimate. Reconciling the algorithm against lighting conditionsis an ongoing
effort.
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This report presents a new algorithm to estimate speed from un-calibrated, relatively low-
resolution cameras. Un-calibrated cameras are widely available to DOT operators and can
provide avaluable, additional quantitative measure for traffic operations and traveler

information.
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